李教授思考片刻,说:“微调分子束的能量,增加 0.5%,看看效果如何。同时,加强对温度梯度的监测,确保其均匀性。”
经过多次调整和实验,终于成功地生长出了一块初步符合要求的非线性光学晶体。通过同步辐射 X 射线衍射技术和高分辨率显微镜成像技术的检测,发现晶体内部缺陷明显减少,纯度和均匀性都有了很大提高。
“我们终于取得了初步突破!”李教授兴奋地对团队成员说道,“但是,这还远远不够,我们需要进一步优化工艺参数,提高晶体的质量和尺寸。”
与此同时,在激光晶体加工车间,陈教授带领的团队正在对激光晶体进行超精密加工。纳米级精度的金刚石刀具在晶体表面缓缓划过,发出轻微的嗡嗡声,研磨盘高速旋转,抛光液均匀地涂抹在晶体表面。
“这个切割深度一定要控制在极小的范围内,任何偏差都可能导致晶体表面的损伤。”陈教授叮嘱着操作人员。
操作人员小李小心翼翼地操作着设备,额头上渗出了细密的汗珠。“教授,目前切割过程还算顺利,但在研磨阶段,我们发现晶体表面的平整度还没有达到预期要求。”
陈教授仔细观察着晶体表面,说:“调整研磨盘的转速和压力,增加抛光液的浓度,再试一次。我们必须确保晶体表面的平整度达到纳米级精度。”
经过反复的试验和改进,激光晶体的加工精度和表面质量逐渐达到了设计要求。
在装备研制方面,王教授和他的团队也在紧锣密鼓地开展工作。他们设计了一种全新的高功率激光脉冲电源和脉冲调制系统,采用了最先进的电子元件和控制算法。
“我们要通过大量的仿真实验和实际测试来验证这个系统的性能。”王教授对团队成员说道。
在仿真实验中,团队成员发现,新设计的系统在高电压和大电流输出时,稳定性和脉冲响应能力都有了显着提高。但是,在实际测试过程中,也出现了一些问题,比如电子元件的散热问题和系统的电磁兼容性问题。
“我们需要增加散热片的面积和优化散热结构,解决电子元件的散热问题。”团队成员小张说道。
王教授点头表示赞同:“同时,我们要对系统的布线和屏蔽措施进行改进,提高电磁兼容性。这需要我们与电磁学专家合作,共同攻克这些难题。”
随着各个关键技术的突破,团队开始进行深紫外激光源的样机搭建和测试工作。
在实验室的测试场地,一台巨大的深紫外激光源样机矗立在那里,各种管线和仪器设备连接在周围,技术人员们忙碌地进行着最后的调试工作。
“准备好了吗?开始进行系统测试!”赵飞扬下达了指令。
测试过程中,首先启动电源和脉冲调制系统,产生高功率的激光脉冲,然后通过非线性光学晶体进行频率转换,输出深紫外激光。
“注意观察激光的输出功率和波长稳定性。”刘祖训紧张地说道。
技术人员小王报告道:“目前激光输出功率达到了预期的 80%,但波长稳定性还有些波动。”
赵飞扬和刘祖训迅速分析数据,试图找出波长不稳定的原因。
“可能是晶体的温度控制不够精确,导致其光学性能发生变化。”赵飞扬说道,“我们要对晶体的温控系统进行优化,提高温度控制的精度。”